

NASA Introduction

- > The ISS partner agencies are active in ISECG
- All partners believe that missions to the lunar vicinity can begin while we are still operating the ISS
- > The updated GER will make it clear that LEO will remain an important destination for all agencies, including non-ISS agencies

The Many Roles of the International Space Station

- Conduct the research and technology demonstrations to enable long duration human spaceflight into the solar system
- Enable the development of a commercial market in low earth orbit
- > Advance benefits to humanity through research
- Basis for international cooperation in exploration

ISS – Accomplishments to Date

- Continuously crewed since November 2000
- > Over 200 different crewmembers from 15 countries
- > >2000 investigations and counting
- > Healthy resilient cadence of cargo supply enabled by partnership

ISS and LEO Current State

Continuous human presence in LEO

- Continuous human presence has been sustained over the past 17 years
 - U.S. Commercial crew will add an additional crew member

Strong International Partnership

- Current ISS Inter-Government Agreements (IGA) have been in place for nearly 20 years and provide treaty-level agreements between US, Russia, Canada, Europe and Japan
- All partners supporting ISS operations to 2024

Research and Development

- Research on ISS spans life and physical sciences, human health, astrophysics, earth sciences, space science, many others
- Users have been greatly expanded into private industry and other government agencies
 - Pharma, materials, manufacturing, human health, model organisms, consumer products
- National Lab investment is enabling new and innovative uses of LEO (cubesats, testing of low TRL technologies, model organism research into human health, many others)

ISS and LEO Current State

Development of commercial markets in LEO

- U.S. cargo and soon crew supplied by private industry
- Commercial crew and cargo support commercial launch industry
 - ~14% of world launch market goes to ISS
- Commercial research and technology development supply and demand is increasing
 - However currently, private industry and other U.S. government agency users are probably not in a position to fully pay for capabilities (transportation, crew time, power, etc.) without ongoing government support
- Interest by private sector companies in establishing commercial human platforms in LEO

Deep space - long duration Exploration

 Requirements for human health and performance research and technology/system demonstrations for habitation systems, and other exploration systems are currently planned to be completed by 2024/2025

Exploration ECLSS Plan for ISS

Looking to the future in 2024 – A Fair Amount of Certainty

- > Continuous human presence will have been sustained for over 24 years
- China will be operating their newly completed space station further expanding opportunities for accessing and conducting research in LEO
- > U.S. commercial crew flights will have enabled greater flight opportunities to ISS and LEO
- ➤ NASA's exploration-related human research and technology/system demonstrations in LEO are nearly complete, with focus shifting to deep space
 - NASA expects to have some ongoing LEO needs to support long-term deep space missions.
- Human spaceflight missions in the lunar vicinity will have begun

Looking to the future in 2024 – Less Certainty

- Whether ISS private industry users will be able to pay for services currently being provided by the U.S. ISS National Lab.
- Whether commercial market demand (tourism, marketing, in-space manufacturing, etc.) will be able to sustain private commercial platforms without ongoing significant government investment
- What NASA is hearing from stakeholders:
 - A formal acknowledgement of a LEO human-spaceflight-enabled commercial policy would be helpful for building business cases
 - Important that the government maintain its demand for LEO capabilities
 - Desire for pricing policy for LEO services
 - Transition from ISS needs to be gradual and well-planned. No advocates for a hard end date of 2024.

Considerations for Future of ISS and LEO

Considerations for Future of ISS and LEO

> Timing - Transition indicators

- Completion of exploration-related research and technology development requiring ISS
- Demand from government and private industry including research and for-profit motivated activities, and whether that demand will support private LEO platforms and associated transportation costs
- Establishment of cislunar Gateway capabilities and execution of missions beyond LEO
- Affordability in the larger HSF Exploration context

Considerations for Future of ISS and LEO

Policy Considerations

- Role of the government in fostering R&D across private industry and non-NASA government agencies
- Policy on use of ISS for purely commercial purposes
- Public-private partnership models

Government needs for future LEO platform(s)

- Future scope of government commitment in LEO spans different platform types continuously crewed long duration platform, periodic presence on long duration platform, periodic presence on short duration platform...or a combination
 - ISS agencies are increasingly talking about future needs
- Scope of the platform has a dramatic effect on transportation industry

Health of on-orbit ISS elements

- Many ISS elements will have considerable structural life after 2028
- Some systems, including the solar arrays,
 will need to be replaced by the end of the 2020s
 in order to maintain the current configuration
- Maintenance levels less than originally anticipated

Element	Year Launched	+30 years
FGB/Node 1	1998	2028
US Lab	2001	2031
Node 2	2007	2037
Columbus/JEM	2008	2038
Node 3/Cupola	2010	2040
Truss segments	2000-2009	2030-2039

